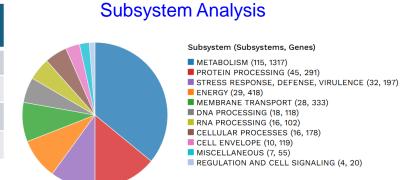

One Day One Genome Pseudomonas simiae

Isolation Bacteria isolated from the environmental samples from Ny-Alesund, Arctic at 79°N, during Second Indian Arctic Expedition

Findings Sequencing identified genes coding *N*-Acyl Homoserine Lactone molecule which is associated with quorum sensing which help to survive in the cold environment. Quorum sensing is the process of cell-to-cell communication in bacteria which allow them to respond to changes in environmental conditions

Application Reveals gene regulation in bacteria thriving in such extremely cold environments and its role in regulating genes involved in cold adaptation.

Pseudomonas simiae (RGCB 73)


Genome Accession Number: LUXZ00000000.1

Quality of Genome Assembly and Annotation:

Results from indigenously developed **BHARAT** analysis pipeline: (**B**acterial **H**ybrid genome **A**ssembly and **R**apid **A**nnotation **T**oolset)

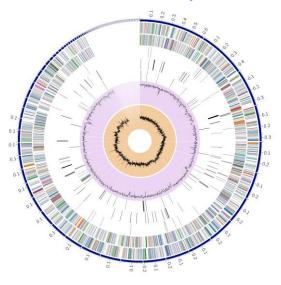

Table 1: Assembly Details	
Contigs	124
GC Content	59.70
Contig L50	10
Genome length	6,265,466 bp
Contig N50	217,239

Table 2: Annotated Genome Features	
CDS	7,222
tRNA	56
Repeat Regions	0
rRNA	6

Table 3: Antimicrobial Resistance Genes	
AMR Mechanism	Genes
Antibiotic target in susceptible species	Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, S12p
Antibiotic target replacement protein	FabG, fabV, HtdX
Efflux pump conferring antibiotic resistance	EmrAB-OMF, EmrAB-ToIC, MacA, MacB, MdtABC-OMF, MdtABC-ToIC, MexAB-OprM, MexEF-OprN, MexEF-OprN system, MexJK-OprM/OpmH, ToIC/OpmH, TriABC-OpmH
Gene conferring resistance via absence	gidB
Protein altering cell wall charge conferring antibiotic resistance	GdpD, PgsA
Protein modulating permeability to antibiotic	OccD1/OprD, OccD2/OpdC, OccD3/OpdP, OccD4/OpdT, OccD6/OprQ, OccK5/OpdH, OccK6/OpdQ, OccK8/OprE, OprB, OprD family, OprF

Genome Assembly

